A new Bayesian paradigm for predition is proposed. Unlike the standard Bayes approach, which is tied to the underlying likelihood function, $\ell(y|\theta)$, this new aproach updates our prior belifs according to user-defined statistical criterion or loss function. Interestingly, we demonstrate how this new approach can generate posteriors over predictive densities, rather than posteriors over parameters.
Slides can be added in a few ways:
slides
parameter in the front matter of the talk filestatic/
and link using url_slides
parameter in the front matter of the talk fileFurther talk details can easily be added to this page using Markdown and $\rm \LaTeX$ math code.